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1. Introduction 

1.1. Motivation 

Very recently, skyrmion-based Reservoir computing was successfully demonstrated by NIM-

FEIA consortium members [1,2]. Combined temporal and spatial multiplexed skyrmion trajec-

tories were analyzed to distinguish different types of gestures (such as push, swipe left/right), 

obtained by radar data. In an even earlier study on a similar confined skyrmion device, non-

separable logic gates, such as the NAND or the XOR-gate were also realized by spatial multi-

plexing. As a next step, we want to try time series prediction with the skyrmion reservoir.  

 

Figure 1: Skyrmion occurrence map and the color-code of the pinning sites. The color scale 

visualizes skyrmion counts at the respective position. 

1.2. Markov State Modeling 

Compared to classical Reservoir computing approaches, Brownian Reservoir computing lever-

ages stochasticity. Exploiting skyrmion diffusion in a single-layer CoFeB skyrmion stack, as used 

in previous studies, allows for ultra-low current operation and the ability to overcome pinning 

effects.  

However, the effective energy landscape of the sample due to inhomogeneities in the material 

is apparent. The skyrmions trajectory under a current input (which encode the time series sig-

nal) is still hopping-dominated. Illustratively, Figure 1 shows the occurrence map of a skyrmion 

(multiple measurements were stacked for a clear visualization of the effective energy land-

scape) with only a few (yellow) pinning sites, in which the skyrmion likes to stay most of the 

time (the data was acquired by optical Kerr microscopy). This discretization possibility moti-

vates the modeling of the skyrmion system as a Markovian process, giving us the opportunity 

to analyze the memory capabilities and stochastic properties within the description of Markov 

processes. The magnetic system is coarse-grained into 𝐾 reasonable skyrmion pinning sites. A 

transition matrix 𝑻෩ is obtained from long-term measurement under fixed conditions (i.e. no 
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change of applied voltage or magnetic field condition), in our case we scan the applied voltage 

in a reasonable range (in which the skyrmion annihilation probability at the device boundaries 

is negligible) with 5 measurements, −1.5 mV ≤  U ≤ 2 mV. Figure 2 show skyrmion occur-

rence of long-term measurements for different applied voltages (used contacts are at the top 

and the bottom right corner of the triangle, the bottom left corner is left free – no applied 

voltage). 

 

Figure 2: Skyrmion occurrence map for different applied voltages. Under applied voltage, 

the skyrmion is driven by spin-orbit torque in the direction to one of the electrodes, de-

pending on the sign of the voltage. The color scale visualizes skyrmion counts at the respec-

tive position. 

 

Each entry 𝒕ij of a transition matrix 𝑻 is the conditional probability for a skyrmion hopping from 

pinning site 𝑖 to pinning site 𝑗.  

The transition matrix is the heart of a Markov State Model (MSM) and allows us for example 

to: 

1.) To “time-integrate” a system by lag time 𝜏, which can be given as a distribution 𝒑, with 

𝑝𝑖 the probability of being in pinning site 𝑖, and σ 𝑝𝑖
𝐾−1
𝑖=0 = 1.  

2.) Calculate a stationary distribution 𝝅, which does not change when 𝑻 is applied. 

3.) Estimate “memory” of our skyrmion reservoir and intrinsic time scales of the hopping. 

The goal is to run ultra-fast predictions of our skyrmion reservoir device. Once the model is 

obtained, we numerically integrate in time steps of the microscopy’s framerate (in our case 

16 Hz), which is orders of magnitude higher than possible with micromagnetic or Thiele-based 

simulations. Next, we aim for experimental verification of predictions of our skyrmion reservoir 

MSM. Finally, we use the model to test performance on the NARMA data set. 

1.3. Energy Modeling 

To scale transition matrices and stationary distributions continuously for any applied voltages, 

we model the system as follows: 

1. An energy is assigned to each pinning site, with respective linear scaling with applied 

voltage: 𝐸𝑖ሺ𝑈ሻ = 𝐸𝑖
0 + 𝑐𝑖 ∙ 𝑈. The voltage-dependent stationary distribution is then 
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given by 𝝅ሺ𝑈ሻ = SOFTMIN൫𝑬ሺ𝑈ሻ൯ =
expሺ−𝑬ሺ𝑈ሻሻ

σ exp ሺ−𝐸𝑘ሺ𝑈ሻሻ𝐾−1
𝑘=0

, a discrete analogy of the Boltz-

mann distribution. 

2. Further an energy is assigned to each transition 𝑖 → 𝑗, 𝐸𝑖𝑗 = 𝐸𝑖𝑗
0 + 𝑐𝑖𝑗 ∙ 𝑈, again with 

linear voltage scaling. The effective energy barriers from state 𝑖, Δ𝑬𝒊ሺ𝑈ሻ (with entries 

Δ𝐸𝑖𝑗ሺ𝑈ሻ = 𝐸𝑖𝑗ሺ𝑈ሻ − 𝐸𝑖ሺ𝑈ሻ) is used to calculate the 𝑖-th row of the transition matrix 

𝑻𝒊 = SOFTMINሺΔ𝑬𝒊ሺ𝑈ሻሻ, adapting the procedure for the stationary distribution. The 

exponential scaling with energy is also apparent in the Arrhenius law, while the at-

tempt frequency is neglected in our approach.  

We minimize the problems numerically with least-squares loss to fit energies and voltage 

scaling factor to our device (as initial values we use estimations based on experimental data 

𝑻෩, for the current scaling we run current path simulations). Figure 3 shows the modeled distri-

butions (left) and transition rates (right), as well as the data obtained from experiment. We 

find good agreement for both the stationary distribution and the transition rates.   

 

 

Figure 3: Modeled (curves) and measured (points) stationary distribution – left – and transi-

tion rates of the matrix diagonal – right – showing good agreement. 

 

2. Time series forecasting with Markov State modeled skyrmion device 

The modeled skyrmion reservoir can now be driven by a voltage signal. We use the (non-linear 

auto-regressive moving average) NARMA as use case. The time series can be constructed by  

𝑦𝑡 = 𝛼𝑦𝑡−1 + 𝛽𝑦𝑡−1 σ 𝑦𝑡−1
𝑛
𝑖=1 + 𝛾𝑢𝑡−𝑛𝑢𝑡−1 + 𝛿 , with 𝑛 = 10, 𝛼 = 0.3, 𝛽 = 0.05, 𝛾 = 1.5, 

𝛿 = 0.1, 𝑢 ∈ [0,0.5ሻ is uniform noise. The formulas imply that 𝑛 previous steps are required 

to construct the next time step of the series. A time series of 1000 time steps is plotted in Figure 

4. We linearly map the noise range 𝑢 ∈ [0, 0.5] to a reasonable voltage range of our MSM 

model, chosen with 𝑈min = −1.7 mV, 𝑈max = 2.2 mV. 
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Our reservoir system 𝑠 is initialized with the stationary distribution of the mean value of the 

noise in the data set 𝝅ሺ𝑈ሺ𝑢തሻሻ. Then, we drive the system with the time signal, converted into 

a voltage signal. Each timestep in the NARMA signal coincides with the lag time 𝜏 of the MSM. 

 

Figure 4: NARMA dataset for given parameters. 1000 steps are separated into training and 

test set. 

 

Figure 5 illustrates the response of the Reservoir under the injection of the voltage series. 

We train a linear model 𝜃ሺ𝑠𝑡−1, … , 𝑠𝑡−𝑛, 𝑢𝑡−1, … 𝑢𝑡−𝑛ሻ on the last 𝑛 time steps to predict the 

next output 𝑦. The predictive power of the reservoir is evaluated by the normalized root mean 

square error NRMSE =
ඥۦሺ𝑦−𝑦ොሻ2ۧ

𝑦ොmax−𝑦ොmin
 . We find NRMSEtrain = 0.727, in the training range and 

NRMSEtest = 0.828 in the testing range of the data set. Figure 6 compares the output 𝑦 with 

the predicted one 𝑦pred.  

 

Figure 5: The time evolution of the reservoir under the applied voltage signal. The color in-

dicates the pinning site, as visible in Figure 1. 
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As next steps, we can analyze the performance of the reservoir, when actual skyrmion trajec-

tories are sampled (instead of working in the limit of infinite statistics). Also, we can try to im-

prove the results by adjusting the mapping between noise 𝑢 and voltage 𝑈 as well as be-

tween the lag time 𝜏 and one time step of the NARMA series. 

 

Figure 6: True versus predicted 𝒚 in the test set. 
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