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1. Introduction 

1.1. Motivation 

The focus of the NIMFEIA project is on making reservoir computing possible by using nonlinear 
magnonics. So far, many insightful developments have been shown for magnons near the cen-
ter of the Brillouin zone. However research into nonlinear magnonics at the edge of the Bril-
louin zone, as relevant to reach higher frequencies, is much less explored. 

The treatment of these small and high-frequency magnons is distinct from the classical ap-
proach commonly employed in magnonics. First, given the quantum nature of spins, they can 
no longer be considered classical vectors in the continuum approximation. Then, the wave-
lengths of very fast magnons get comparable with this lattice discretization where the classical 
approach stops being valid. For both of these things, a quantum mechanical approach is essen-
tial. This is where the field of nonlinear magnonics enters the domain of ultrafast magnetism. 

1.2. Nonlinear magnonics meets ultrafast magnetism 

A minimal theoretical model necessary for describing the dynamics of spins on the lattice is 
the Heisenberg model. It is given by the Hamiltonian: 

𝐻 = ෍ሺ𝐽0 + 𝐽ሺ𝑡ሻሺ𝒆 ⋅ 𝛅ሻ2ሻ𝑺𝑖

𝑖,𝛅

⋅ 𝑺𝑖+𝛅.  

Here, the 𝑺𝑖 = ሺ𝑆𝑖
𝑥, 𝑆𝑖

𝑦 , 𝑆𝑖
𝑧ሻ is the vector of quantum spin operators at the site 𝑖. The summa-

tion is done over the lattice vectors 𝛅 that define crystal bonds between atomic spins.  

The constant  𝐽0 is the exchange interaction term that defines the magnetic order of the system. 
We study antiferromagnetic systems where the exchange constant is positive, favouring anti-
alignment of neighbouring spins. Antiferromagnets have naturally high excitation frequencies 
[1] and the perturbation of exchange allows us to access the dynamics of the fastest magnons, 
at the edge of the Brillouin zone. 

In [2], it has been summarized how femtosecond laser pulses can excite a magnetic material in 
a way described by perturbing bonds in a model Hamiltonian, like the Heisenberg model. This 
excitation is modelled by the 𝐽ሺ𝑡ሻ term. The vector 𝒆 defines the orientation of the electric field 
of the laser pulse. The maximum effect on a given bond 𝛅 arises when the electric field is po-
larized along the bond. 

To step into the realm of nonlinear magnonics, we must study the dynamics of the Heisenberg 
model as a function of the shape and the amplitude of the perturbation. There are many pro-
spects beyond the linear response of the system, that can be reached with stronger perturba-
tions. An interesting example of this was already shown by supermagnonic propagation [3]. 
This shows that magnon-magnon interactions, often considered important only at high pertur-
bation strengths, show up already at relatively weak driving, opening up an exciting possibility 
for further control with stronger perturbations. 

Optical perturbation of the exchange interaction in AFMs leads to the excitation of magnon 
pairs. The physics of such two-magnon modes is dominated by magnons near the edge of the 
Brillouin zone and goes beyond the classical description given by the magnetization and the 
Néel vector, or superpositions of two single-magnon modes [4]. Furthermore, the linearized 
version of quantum theory which does not include the two-magnon modes, cannot account for 
the full picture of magnon dynamics (as confirmed by the supermagnonic propagation phe-
nomenon). It will be very interesting to study the effect of nonlinear perturbations on super-
magnonic propagation. 
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2. Method 

We can employ several approaches to perform the calculations in the Heisenberg model. The 
most direct way would be to exactly diagonalize the Hamiltonian, enabling a complete dynam-
ical description derived from the Schrödinger equation. However, this approach is valid only for 
very small systems. Otherwise, a representational method is required to overcome the expo-
nential growth of the Hilbert space. We chose NQS, a very powerful neural network represen-
tation of the quantum many-body wave function. In any case, one must first obtain the ground 
state of the unperturbed Heisenberg model and then propagate it in time with the selected 
method’s equation of motion. 

2.1. Exact diagonalization (ED) 

This approach includes using the evolution operator to propagate the system in time. A spin 
quantum system is represented by a spin configuration, or in other words, written in the prod-
uct states basis: 

ȁΨ >= ȁ𝑠1
𝑧 >⊗ ȁ𝑠2

𝑧 >⊗ … ⊗ ȁ𝑠𝑁
𝑧 >= ȁ𝑠1

𝑧𝑠2
𝑧 … 𝑠𝑁

𝑧 >. 

After diagonalizing the unperturbed Hamiltonian in this basis to find the ground state ȁΨ0 >, 
we find the eigenstates ȁϕ𝑚 > and energies 𝐸𝑚 of the full Hamiltonian, and use: 

ȁΨሺ𝑡ሻ >= ෍< ϕ𝑚ȁΨ0

𝑚

> 𝑒−𝑖𝑡𝐸𝑚ȁϕ𝑚 > 

to get the full dynamics. This approach, however, only works for very small systems because 
the Hilbert space grows as 2𝑁 with the size 𝑁, making exact diagonalization unfeasible for larger 
systems rather quickly. 

2.2. Neural Quantum States (NQS) 

To overcome this problem with the exact approach, we use a variational representation of the 
many-body wave function. This approach, pioneered by Carleo and Troyer [5], uses a neural 
network as a variational ansatz. The network used throughout this research is the Restricted 
Boltzmann Machine (RBM): 

Ψሺ𝑠ሻ = ෑ 2

𝑀

𝑗

cosh൫𝑏𝑗 + 𝑤𝑖𝑗𝑠𝑖
𝑧൯. 

Here, the input spin configuration 𝑠 = {𝑠𝑖
𝑧}, 𝑖 = 1, … , 𝑁 is passed through a hidden layer with 

biases 𝑏𝑗 and weights 𝑤𝑖𝑗 to get the probability amplitude Ψሺ𝑠ሻ of the given configuration. The 

ratio 𝛼 =  𝑀/𝑁 is set by the user to tune the expressive power of the neural network. 

Just like in ED, we first calculate the ground state, equivalent to optimizing the network with 
gradient descent. To obtain the dynamics, we use the following method. 

2.3. Time-dependent variational principle (TDVP) 

TDVP is a time-dependent version of the Rayleigh-Ritz variational principle [6]. The cornerstone 
of this method is the following equation of motion: 

𝑆𝑘𝑘′𝑊ሶ
𝑘′ = −𝑖𝐹𝑘. 

Here, the vector 𝑾 = ሺ𝑊1, 𝑊2, … , 𝑊𝑀ሻ includes all the parameters of the neural network, 𝑭 =
ሺ𝐹1, 𝐹2, … , 𝐹𝑀ሻ is the energy gradient, and the 𝑆 matrix is the metric of the parameter space. 

Since both 𝑆 and 𝑭 are functions of 𝑾, this equation is nonlinear. So, numerical time integration 
is required to solve it. We use the Heun scheme, which is a second-order update rule: 

𝑾𝑛+1 = 𝑾𝑛 +
d𝑡

2
ቀ𝒇ሺ𝑾𝑛ሻ + 𝒇൫𝑾𝑛 + d𝑡𝒇ሺ𝑾𝑛ሻ൯ቁ. 



 

 

Page 4 of 7 

 

 

Here, 𝑾𝑛 and 𝑾𝑛+1 are parameter values at times 𝑡𝑛 and 𝑡𝑛+1 = 𝑡𝑛 + d𝑡 respectively, and the 

update function is formally 𝒇 = ሺ𝑓1, 𝑓2, … , 𝑓𝑀ሻ = −𝑖𝑆−𝟏𝑭. 

There’s a bit of a caveat here. Usually, due to the singularity of the 𝑆 matrix, a regularization 
scheme is used: 𝑆 → 𝑆 + ε𝐼, where the regulator ε is a small number [7]. However, as a math-
ematical artefact, the regulator is susceptible to noise, as shown in [8]. So, instead of using the 
regulator, we obtain the update function 𝒇 by directly solving the TDVP equation of motion 

without the inversion of the 𝑆 matrix. In other words, 𝒇 = 𝑾ሶ  that solves the equation 𝑆𝑾ሶ =
−𝑖𝑭, where a solution is obtained using the least-squares method. This way, we get regulariza-
tion-free dynamics. 

3. Calculations 

3.1. Overview 

It is known that NQS and TDVP suffer from problems related to the stability of time integration, 
as indicated by [8]. Here we present the analysis of stability properties depending on the driving 
strength of the Heisenberg model. We restricted the analysis to a very small system of 2 × 2 
lattice, to keep the exact solutions available and usable as a benchmark for integration meth-
ods. We kept the driving in a simple quench form: 

Jሺtሻ = ൜
0, t < 0,

Δ𝐽0 , t ≥ 0,
 

where the strength of the quench is determined by the Δ parameters. By studying a simple 
quench scenario, gain insights into the nonlinear dynamics of the two-magnon mode in a min-
imal model. We are particularly interested in the spin-spin correlation function: 

𝐶ሺ𝑡ሻ = 𝑺𝑖ۃ ⋅ 𝑺𝑖+𝛅ۄ, 

where 𝛅 indicates the index in the perturbed direction of the lattice. This function was shown 
to be indicative of the propagation properties of spin waves [3, 4].  

3.2. Preliminary exact diagonalization results 

We first present the exact diagonalization calculations of the correlation function dynamics. 
This approach is purely for insight about the correlation dependence on the driving parameter, 
as a precursor to the NQS approach. We calculated the nearest-neighbour correlation function 
along the perturbation direction as a function of the driving strength Δ, for insight into the 
dynamics when we step into the nonlinear regime. 

In Figure 1, we present some standard behaviour of the correlation function (left). In previous 
research, the Heisenberg system was driven out of equilibrium by applying a Gaussian pulse 
with an amplitude of 0.1𝐽0, still considered quite a weak driving. We include this value in the 
quenching scheme, as well as several others in the graph. We can observe a significant influ-
ence of the quenching strength on both the amplitude and frequency of the oscillations. Such 
dependence of the oscillation frequency and amplitude on the quench strength is a hallmark 
of nonlinear dynamics. A more detailed dependence is shown on the right side of Figure 1. 

We observe that, by increasing the driving strength in either the positive or the negative direc-
tion, we can reach high frequencies and amplitudes of the correlation function, and therefore 
of propagating spin waves. However, first, we must explore the possibility of reaching these 
calculations using the NQS method, which scales better to bigger systems. 
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3.3. NQS results 

Here, we present a similar type of calculation: correlation dynamics as a function of perturba-
tion strength, this time calculated with the NQS representation and the TDVP method for time 
propagation. In tandem, we present the ED results of the same system, to test the validity of 
NQS in the regimes of strong driving. This will bring us a step closer to the certainty that we can 
use this method in the nonlinear regime of dynamics of antiferromagnets.  

 

Figure 1. Left: several examples of the correlation function time dependence for different driving strength Δ. 
The correlation function oscillates in time with a well-defined frequency and constant amplitude. Both can be 
manipulated by changing the driving parameter. Right: amplitude and frequency dependence or correlation 

function oscillations as functions of the driving parameter. The dashed lines indicate the breakdown scenario, 
discussed in 3.3. 

Figure 2. Correlation dynamics for several values of the quenching parameter, obtained by NQS, as indicated by full red lines. 
Exact results are presented as a benchmark in grey dashed lines. The results show that NQS faithfully reproduces exact dynam-

ics for all values of the quenching parameter, except for one. At Δ =  −2 a numerical breakdown occurs. 
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In Figure 2, the time profile of the correlation function for different values of quenching 
strength is shown, obtained by both NQS and ED. For the most part, NQS results follow the 
curves of the exact dynamics very well, with one obvious exception. At Δ =  −2, the NQS re-
sults deviate from the ED results wildly after reaching the first maximum of the correlation 
function. In fact, the dynamical behaviour of the system is lost at that point. We dubbed this 
occurrence the breakdown regime.  

This numerical instability represents a significant setback in accessing the physics of nonlinear 
magnonics at the edge of the Brillouin zone. To proceed further, a way around the numerical 
breakdown that would lead to stable numerical integration is required. 

4. Discussion 

Looking at these results, we can come up with a conclusion about this preliminary dive into the 
nonlinear dynamics of magnons at the edge of the Brillouin zone. We’ve concluded already that 
we need an exact and quantum tool for probing this physical scenario, as the classical or linear 
approaches are insufficient. 

In this regard, NQS turned out to be a powerful and promising tool, as far as 2D lattice methods 
go. But, considering the numerical breakdown, there’s clearly a very specific physical scenario 
where this method just doesn’t work, even in the absence of stochastic effects that were earlier 
found to lead to instabilities. We’ve found this in the quenching scenario with the driving pa-
rameter Δ =  −2, but there’s no telling if this situation repeats for different perturbation 
shapes and amplitudes. So, to move forward with the investigation of nonlinear magnonics 
from the quantum perspective, it’s imperative that we work towards understanding this nu-
merical breakdown and its influence on the results we obtain. 

We already have a lot of insights about the features of the breakdown. For example, we find 
that this type of numerical instability is unrelated to either the noise, as no stochastic method 
was applied, or the singularity of the 𝑆 matrix. We plan to use our findings to move towards a 
better understanding and possibly solving the breakdown problem, thus opening doors to a 
more stable and universally applicable method for studying the dynamics of nonlinear magnons 
at the edge of the Brillouin zone. 
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